
Symbolic Parameter Estimation of Continuous-Time
Markov Chains

Anders Malta Jakobsen
dept. of Computer Science

AAU
Aalborg, Denmark

amja23@student.aau.dk

Lars Emanuel Hansen
dept. of Computer Science

AAU
Aalborg, Denmark

leha20@student.aau.dk

Casper Ståhl
dept. of Computer Science

AAU
Aalborg, Denmark

cstahl20@student.aau.dk

Oliver Holmgaard
dept. of Computer Science

AAU
Aalborg, Denmark

oholmg20@student.aau.dk

Daniel Runge Petersen
dept. of Computer Science

AAU
Aalborg, Denmark

dpet20@student.aau.dk

Sebastian Aaholm
dept. of Computer Science

AAU
Aalborg, Denmark

saahol20@student.aau.dk

Abstract—This is a placeholder abstract. The whole template
is used in semester projects at Aalborg University (AAU).

I. INTRODUCTION

This paper is about improving the runtime of jajapy - a tool
for estimating parameters in parametric models.

Markov Chain (MC) - A chain of events described as
a sequence of events without knowledge of prior. Hidden
Markov Model (HMM) - A markov chain with emission
probabilities. Markov Decision Process (MDP) - A markov
chain with actions that influence the transitions. Continuous
Time Markov Chain - A markov chain with traces that have
dwell times as well as label emissions. Baum-Welch algorithm
(BW) - Expectation-Maximization algorithm for finding the
parameters of a Hidden Markov Model. Algebraic Decision
Diagram (ADD) - A data structure of states and binary deci-
sions, also called a Multi-Terminal Binary Decision Diagram
(MTBDD).

II. HMM EXAMPLE

A. Setup

We have a simple HMM with, two hidden states S1 and
S2, two observation symbols: O1 and O2 and an observation
sequence O = {O1, O2, O1}.

The HMM parameters are:
Transition matrix A (probability of moving from one state

to another):

A =

[
0.6 0.4
0.5 0.5

]
Emission matrix B (probability of emitting observation given
a state):

B =

[
0.7 0.3
0.4 0.6

]
Initial state probability vector π (probability of starting in
each state):

π =
[
0.8 0.2

]

B. Expectation step

In the expectation step we calculate α and β.
1) Forward step α: We first compute the forward probabil-

ities αt(i), which represent the probability of being in state i
at time t after observing the first t symbols.

a) Initialization at (t = 1):

α1 = π ◦By1

Where By1 is the first column of the emission matrix, corre-
sponding to observation O1

(i.e., By1 =

[
0.7
0.4

]
) and ◦ represents the Hadamard product.

So, we get:

α1 =

[
0.8
0.2

]
◦
[
0.7
0.4

]
=

[
0.56
0.08

]
b) Induction (for t = 2, 3, . . . , T): For subsequent

timesteps, we compute:

αt+1 = Byt+1 ◦ (ATαt)

Where AT is the transpose of the transition matrix. Let’s apply
this to compute the forward probabilities for t = 2 and t = 3:

At t = 2 (observation O2):

α2 = By2 ◦ (ATα1)

We have:

B(y2) =

[
0.3
0.6

]
and

AT =

[
0.6 0.5
0.4 0.5

]
We get:

α2 =

[
0.3
0.6

]
◦
([

0.6 0.5
0.4 0.5

]
·
[
0.56
0.08

])
=

[
0.1128
0.1584

]

At t = 3 (observation O1):

α2 = By1 ◦ (ATα2)

We get:

α3 =

[
0.7
0.4

]
◦
([

0.6 0.5
0.4 0.5

]
·
[

0.1
0.1584

])
=

[
0.102816
0.049728

]
2) Backward step β: The backward probabilities βt(i)

represent the probability of observing the rest of the sequence
starting from time t+ 1, given that the system is in state i at
time t.

Initialization (at t = T = 3)

βT = 1 =

[
1
1

]
a) Induction (for t = T − 1, T − 2, . . . , 1): For earlier

timesteps, we compute:

βt = A(βt+1 ◦Byt+1)

At t = 2 (observation O1):

β2 = A(β3 ◦By1)

By1 =

[
0.7
0.4

]
, β3 =

[
1
1

]
We get:

β2 =

[
0.6 0.4
0.5 0.5

]
·
([

1
1

]
◦
[
0.7
0.4

])
β2 =

[
0.6 0.4
0.5 0.5

]
·
[
0.7
0.4

]
=

[
0.58
0.55

]
At t = 1 (observation O2):

β1 = A(β2 ◦By2)

We have:

By2 =

[
0.3
0.6

]
, β2 =

[
0.58
0.55

]
β1 =

[
0.6 0.4
0.5 0.5

]
·
([

0.3
0.6

]
◦
[
0.58
0.55

])
β1 =

[
0.6 0.4
0.5 0.5

]
·
[
0.174
0.33

]
=

[
0.2364
0.252

]
C. Step 3: Compute γ and ξ

1) Compute γ: We can compute γ by

γt = (1T • αT)
−1 • (αt ◦ βt)

αT =

[
0.089628
0.053328

]
1
T • αT = 0.089628 + 0.053328 = 0.152544

This is the total probability of oberserving our sequence O =
{O1, O2, O1}

Now we can compute γt for each time stamp.

At t=1: We have

α1 =

[
0.56
0.08

]
, β1 =

[
0.2364
0.252

]
We take the Hadamard product of this.

α1 ◦ β1 =

[
0.56 · 0.2364
0.08 · 0.252

]
=

[
0.132384
0.02016

]
We normalize the first part and take the scalar product.

γ1 =
1

0.152544
•

[
0.132384
0.02016

]
=

[
0.8678414
0.1321589

]
At t = 2:
We have:

α2 =

[
0.1074
0.1584

]
, β2 =

[
0.58
0.55

]
The Hadamard product is:

α2 ◦ β2 =

[
0.1074 · 0.58
0.1584 · 0.55

]
=

[
0.062292
0.08712

]
We normalize the first part and take the scalar product.

γ2 =
1

0.152544
•

[
0.062292
0.08712

]
=

[
0.42888609
0.57111391

]
At t = 3
We have:

α3 =

[
0.089628
0.053328

]
, β3 =

[
1
1

]
The Hadamard product is:

α3 ◦ β3 =

[
0.089628
0.053328

]
We normalize the first part and take the scalar product.

γ3 =
1

0.152544
•

[
0.089628
0.053328

]
=

[
0.67400881
0.32599119

]
2) Calculating ξ: We calculate ξ by

ξt = ((1TαT)
−1 • A) ◦ (αt ⊗ (βt+1 ◦Byt+1)

T)

We start by calculating ((1TαT)
−1 • A): From before, we

have

(1TαT)
−1 =

1

0.152544
= 6.996

We have:

A =

[
0.6 0.4
0.5 0.5

]
We get:

8.996 • A =

[
6.996 · 0.6 6.996 · 0.4
6.996 · 0.5 6.996 · 0.5

]
=

[
4.198 2.798
3.498 3.498

]
We can now calculate α1 ⊗ (β2 ◦By2)

T . We have :

α1 =

[
0.56
0.08

]
, β2 =

[
0.58
0.55

]
, By2 =

[
0.3
0.6

]

We calculate β2 ◦By2:

β2 ◦By2 =

[
0.58
0.55

]
◦
[
0.3
0.6

]
=

[
0.174
0.33

]
Outer product:

α1 ⊗ (β2 ◦By2)
T =

[
0.56
0.08

]
⊗
[
0.174 0.33

]
=

[
0.09744 0.1848
0.01392 0.0264

]
We can now calculate ξ1

ξ1 =

[
4.198 2.798
3.498 3.498

]
◦
[
0.09744 0.1848
0.01392 0.0264

]
ξ1 =

[
0.38325991 0.03650094
0.60572687 0.08653241

]
At t=2:
We have:

By1 =

[
0.7
0.4

]
, α2 =

[
0.1074
0.1584

]
, β3 =

[
1
1

]
Hadamard product for β3 ◦By1

β3 ◦By1 =

[
1
1

]
◦
[
0.7
0.4

]
=

[
0.7
0.4

]
Outer product:

α2 ⊗
[
0.7 0.4

]
=

[
0.07518 0.04296
0.11088 0.06336

]
We can now calculate ξ2:

ξ2 =

[
4.198 2.798
3.498 3.498

]
◦
[
0.07518 0.04296
0.11088 0.06336

]

ξ2 =

[
0.07341938 0.06873304
0.03726872 0.0523348

]
At t=3:
We have:

By1 =

[
0.7
0.4

]
, α3 =

[
0.089628
0.053328

]
, β3 =

[
1
1

]
Hadamard product for β3 ◦By1

β3 ◦By1 =

[
1
1

]
◦
[
0.7
0.4

]
=

[
0.7
0.4

]
Outer product:

α3 ⊗
[
0.7 0.4

]
=

[
0.062740 0.035852
0.037329 0.021331

]
We can now calculate ξ3:

ξ2 =

[
4.198 2.798
3.498 3.498

]
◦
[
0.062740 0.035852
0.037329 0.021331

]

ξ3 =

[
0.2839837 0.09127753
0.13480176 0.06519824

]

D. Update values

π̂ = γ1 =

[
0.86784141
0.1321589

]
Â = (1⊘ γ) • ξ

B̂ = (1⊘ γ) • (
T∑

t=1

γt ⊗ 1
T
yt)

When referring to γ, we use the sum of the probabilities:

γ =

T∑
t=1

γt

and ξ:

ξ =

T∑
t=1

ξt

We therefore calculate:

γ =

[
0.86784141
0.1321589

]
+

[
0.42888609
0.57111391

]
+

[
0.67400881
0.32599119

]
=

[
1.97073631
1.02926369

]
And

ξ =

[
0.38325991 0.03650094
0.60572687 0.08653241

]
+

[
0.07341938 0.06873304
0.03726872 0.0523348

]

+

[
0.2830837 0.09127753
0.13480176 0.06519824

]
=

[
0.739763 0.19651152
0.77779736 0.20406545

]
We can now calculate

1⊘ γ =

 1

2.0923
1

1.1352


We can now calculate Â

Â =

 1

2.0923
1

1.1352

•[0.9897 0.7370
0.5670 0.3888

]
=

[
0.37537391 0.19092437
0.39467348 0.198226353

]

We calculate B̂ We first calculate the sum of the outer
products:

T∑
t=1

γt ⊗ 1
T
yt

At t = 1:

γ1⊗
[
1 0

]
=

[
0.86784141
0.1321589

]
⊗
[
1 0

]
=

[
0.86784141 0.13215859

0 0

]
At t = 2:

γ2⊗
[
0 1

]
=

[
0.42888609
0.57111391

]
⊗
[
0 1

]
=

[
0 0

0.42888609 0.57111391

]
At t = 3:

γ3⊗
[
1 0

]
=

[
0.67400881
0.32599119

]
⊗
[
1 0

]
=

[
0.67400881 0.32599119

0 0

]

x1

y1

0.7 0.3

y1

0.4 0.6

Fig. 1. B-matrix representation in ADD

x1

y1

0.6 0.4

y1

0.5 0.5

Fig. 2. A-matrix representation in ADD

We summearize these to get:[
0.86784141 0.13215859

0 0

]
+

[
0 0

0.42888609 0.57111391

]
+

[
0.67400881 0.32599119

0 0

]
=

[
1.54185022 0.45814978
0.42888609 0.57111391

]

b̂ =

 1

2.0923
1

1.1352

 •
[
1.54185022 0.45814978
0.42888609 0.57111391

]

=

[
0.78237266 0.23247645
0.41669214 0.55487618

]
E. ADD representation

As we only need one bit to represent the the rows and
columns with one bit, we only need one variable for the them,
as x1 is the variable for rows and y1 is the variable for column.

We first make the matrices into ADD representation.
We can now use the ADD representation to calculate α and

β.
When using ADD’s it is important to remember, if we need

to take a row from a matrix, we fix the input to the ADD by
setting the x-variables to the desired row. An example is taking
the third row of a matrix with 8 rows, we set, x1 = 1, x2 =
1, x3 = 0 and x4 = 0. if we need to take the second column,
we set y1 = 1, y2 = 0 and y3 = 0, y4 = 0. Hadamard product
is row-wise multiplication of the matrices. So to calculate the
Hadamard product of two matrices, we set the x-variables to
the same row in both matrices and multiply the corresponding
nodes in the ADDs. To calculate a Hadamard product in ADD,

x1

y1

0.6 0.4 0.5

Fig. 3. A-matrix representation in ADD caption reduced

x1

0.8 0.2

Fig. 4. π-matrix representation in ADD

we multiply the corresponding nodes in the ADDs, as shown
in the following figure.

Matrix multiplication is done by fixing the input to the first
matrix and the output to the second matrix. We then sum the
result of the Hadamard product of the rows of the first matrix
and the columns of the second matrix. This is shown in the
following figure.

ACRONYMS

AAU Aalborg University. 1

APPENDIX A
COMPILING IN DRAFT

You can also compile the document in draft mode. This
shows todos, and increases the space between lines to make
space for your supervisors feedback.

x1

y1

a b

y1

c d

Fig. 5. Matrix A in ADD

x1

y1

e f

y1

g h

Fig. 6. Matrix B in ADD

x1

y1

a · e b · f

y1

c · g d · h

Fig. 7. Hadamard product of A and B in ADD

x1

y1

a · e+ b · g a · f + b · h

y1

c · e+ d · g c · f + d · h

Fig. 8. Matrix multiplication of A and B in ADD

x1

y1

λ · a λ · b

y1

λ · c λ · d

Fig. 9. Scalar product in ADD

x1

y1

x2

y2

a · e a · f

y2

a · g a · h

x2

y2

b · e b · f

y2

b · g b · h

y1

x2

y2

c · e c · f

y2

c · g c · h

x2

y2

d · e d · f

y2

d · g d · h

Fig. 10. Kroneker product in ADD

x1

y1

a

f

b

f

y1

c

g

d

h

Fig. 11. Hadamard division of A and B in ADD

x1

y1

x2

y2

a · e a · f

y2

c · g c · h

x2

y2

b · e b · f

y2

d · g d · h

y1

x2

y2

0 0

y2

0 0

x2

y2

0 0

y2

0 0

Fig. 12. Katri-Rao in ADD

y1

x1

a c

y1

b d

Fig. 13. transpose in ADD

	Introduction
	HMM Example
	Setup
	Expectation step
	Forward step
	Backward step

	Step 3: Compute and
	Compute
	Calculating

	Update values
	ADD representation

	Appendix A: Compiling in draft

