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Abstract—The Baum-Welch (BW) algorithm is a widely used method
for training Hidden Markov Models (HMMs) and Markov Chains (MCs)
from observation sequences. However, traditional implementations using
recursive or matrix-based methods often struggle with scalability due
to redundancy and high memory consumption. This thesis proposes a
novel, symbolic implementation of the BW algorithm using Algebraic
Decision Diagrams (ADDs), which provide a compact and efficient
representation of probabilistic models. We present CUPAAL, a C++
library that implements the BW algorithm entirely with ADDs, and
integrate it into the JAJAPY library, resulting in a new symbolic learning
tool referred to as JAJAPY 2.

Our approach enables efficient learning from multiple observation
sequences and supports both HMMs and MCs. Through experiments
on models from the QComp benchmark set, we demonstrate that the
symbolic implementation significantly improves performance for larger
observation sets and models with repeated structures, while maintaining
learning accuracy. These results affirm the potential of ADD-based
symbolic computation as a scalable alternative for probabilistic model
learning.

1 INTRODUCTION

The Baum-Welch algorithm is a widely used method for
training Markov models in various applications, including

speech recognition, bioinformatics, and financial modeling [1–
3].

Traditionally, the Baum-Welch algorithm relies on matrix-
based or recursive approaches to estimate model parameters
from observed sequences.

An example of this is the Jajapy library [4], which im-
plements the Baum-Welch algorithm using a recursive matrix-
based approach. This library is designed to learn probabilistic
models from partially observable executions, producing obser-
vation sequences - also known as traces.

The key strength of Jajapy lies in its flexibility to accommo-
date various learning scenarios, along with seamless integration
into standard verification workflows using tools like Storm
and Prism. However, the performance of Jajapy’s Baum-Welch
algorithm implementation has been a significant limitation due
to the inherent redundancy in matrix-based representations,
which leads to inefficiencies, particularly in terms of time and
memory consumption, thereby restricting its scalability to larger
models.
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To address these challenges, we propose a novel approach
that replaces conventional matrices and recursive formulations
with Algebraic Decision Diagrams (ADDs). ADDs provide a
compact, structured representation of numerical functions over
discrete variables, enabling efficient manipulation of large
probabilistic models.

By leveraging ADDs, we can exploit the sparsity and
structural regularities of Hidden Markov Models (HMMs)
and Markov Chains (MCs), significantly reducing memory
consumption and accelerating computation.

This paper presents several contributions toward efficient
learning of HMM and MC models by leveraging ADDs:

First, we extend the Baum-Welch (BW) algorithm for these
models using symbolic computation, reformulating each algo-
rithm step as operations on ADDs. We leverage the Colorado
University Decision Diagram (CuDD) library to carry out
these operations symbolically using ADDs. This reformulation
enables efficient calculation of the Markov models in a compact
and scalable form.

Secondly, our approach extends previous work on symbolic
calculation by accommodating learning from multiple observa-
tion sequences for both types of Markov models, broadening
the applicability of symbolic learning.

Thirdly, we conduct an experimental evaluation of the
scalability of the symbolic Baum-Welch algorithm for an MC
from the QComp benchmark set [5], which serves as a standard
reference for evaluating the performance of probabilistic model
checking algorithms. Our findings suggest that replacing
matrices and recursive formulations with ADDs offers a scalable
alternative, making Markov model-based learning feasible for
larger and more complex datasets.

Additionally, we implement Python bindings for the Cu-
PAAL tool, making it accessible and usable within Python-
based machine learning and model-checking workflows, such
as Jajapy1.

Finally, we integrate these CuPAAL Python bindings into
Jajapy as Jajapy 2, allowing users to run symbolic probabilistic
learning algorithms within Jajapy seamlessly.

2 PREVIOUS WORK

In this section, we provide a brief overview of previous work
that has influenced our research and has been iterated upon.
Specifically, we discuss what these tools are, how they function,

1. Source code available at: https://github.com/AAU-Dat/CuPAAL
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Fig. 1. Modeling and verification workflow using JAJAPY [6]. Phases in-
volving JAJAPY are highlighted in green, while the blue phase represents
verification using STORM or PRISM .

who utilizes them, and the motivations behind integrating them
into our research. The focus will be on four primary tools:
Prism, Storm, Jajapy, and CuPAAL.

2.1 Jajapy

Jajapy provides learning algorithms designed to construct
accurate models of a System Under Learning (SUL) from
observed traces. Once learned, these models can be directly
exported for formal analysis in tools such as Storm and Prism.

In this context, we refer to the training set as the collection
of observation traces used to infer a model of the SUL and the
test set as a separate set of traces used to evaluate the quality of
the learned model.

Jajapy supports learning various types of models, depend-
ing on the structure of the training data. For clarity, this paper
focuses specifically on the new features introduced in Jajapy 2,
which primarily target Markov Chains (MCs). However, these
improvements are equally applicable to other classes of Markov
models supported by the tool.

At the core of Jajapy’s learning capabilities are several
variants of the Baum-Welch (BW) algorithm [7, 8], adapted for
MC, Markov Decision Process (MDP) [9], and Continuous Time
Markov Chain (CTMC) [10].

Each algorithm requires two inputs: a training set and the
desired number of states for the output model. The process
begins with the creation of a randomly initialized model (e.g., an
MC). It iteratively updates its transition probabilities, increasing
the likelihood of transitions that better explain the observed
traces.

The efficiency and accuracy of the learning process depend
heavily on the choice of the initial hypothesis. To improve
convergence and model quality, Jajapy allows users to sup-
ply custom initial hypotheses in several formats, including
Stormpy sparse models, Prism files, or native Jajapy model
definitions.

An example of using Jajapy to learn a 10-state MC from a
training set, starting from a random initial hypothesis, is shown
in Listing 1.

1 import jajapy
2 training_set = jajapy.loadSet("Path/to/data")
3 type(training_set) # list
4
5 learned_model = jajapy.BW().fit(training_set,

nb_states=10)→

6 type(learned_model) # stormpy.SparseDtmc

Listing 1. Example of using JAJAPY’s BW implementation to learn a
10-state MC from a training set.

Jajapy supports reading Prism files using Storm (through
Stormpy), as well as direct verification of learned models
through properties, also using Storm, provided the properties
are supported. Alternatively, the model can be exported to
Prism’s format for verification using the Prism model checker.

2.2 CuPAAL
CuPAALis a tool developed in C++ that extends the work
done in Jajapy by implementing the BW algorithm with an
Algebraic Decision Diagram (ADD)-based approach instead of a
recursive method. The goal of CuPAAL is to leverage ADDs to
improve the efficiency of learning Markov models, particularly
in large-scale applications where traditional recursive methods
may become computationally expensive.

CuPAAL has undergone multiple iterations. Initially, it
implemented a partial ADD-based approach, where only the
calculation of the alpha and beta values of the BW algorithm
were implemented using ADDs. This partial implementation
served as an initial proof-of-concept to determine whether
incorporating ADDs could yield performance benefits compared
to the recursive approach employed by Jajapy.

Following promising results from the partial implementa-
tion, further development led to a fully ADD-based version of
CuPAAL for Hidden Markov Models (HMMs). This iteration
replaced all-recursive computations with ADDs, enabling more
efficient execution, particularly for large models. The transition
to a fully ADD-based approach demonstrated the potential for
significant computational savings and scalability improvements,
reinforcing the viability of this method for broader applications
beyond our initial research scope.

Because there is no notion of HMM in the Prism formalism,
we have implemented the BW algorithm for use with MCs.
Given the similarities between these model types, we have
reused a lot of the previous work in the implementation.

By building upon Jajapy and developing CuPAAL, we have
been able to evaluate the impact of using ADDs in probabilistic
model learning.

3 PRELIMINARIES

This section provides an overview of the theoretical background
necessary to understand the rest of the article. For ease of
reference Appendix B contains a table of symbols used in the
paper.

We begin by defining the key concepts of a Hidden Markov
Model (HMM) and a Markov Chain (MC), which are the two
main models used in this report, then go on to introduce
the Baum-Welch (BW), which is a widely used algorithm for
training HMMs, and showing how it can be adapted to handle
multiple observation sequences using matrix operations.

3.1 Hidden Markov Model
HMMs were introduced by Baum and Petrie in 1966 [11] and
have since been widely used in various fields, such as speech
recognition [1], bioinformatics [2], and finance [3].

A HMM is a statistical model that describes a system that
evolves over time. The system is assumed to hold the Markov
property, meaning that the future state of the system only
depends on the current state and not on the past states. The
system is also assumed to be unobservable, meaning that the
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states are hidden and cannot be directly observed. Instead, the
system emits observations, which are used to infer the hidden
states.

Definition 1 (Hidden Markov Model). A HMM is a tuple
ℳ = (𝑆, 𝐿, 𝜔, 𝜏, 𝜋), where:

∙ 𝑆 is a finite set of states.
∙ 𝐿 is a finite set of labels.
∙ 𝜔 ∶ 𝑆 → 𝐷(𝐿) is the emission function.
∙ 𝜏 ∶ 𝑆 → 𝐷(𝑆) is the transition function.
∙ 𝜋 ∈ 𝐷(𝑆) is the initial distribution.

𝐷(𝑋) denotes the set of probability distributions over a
finite set 𝑋. The emission function 𝜔 describes the probability
of emitting a label given a state. The transition function 𝜏
describes the probability of transitioning from one state to
another. The initial distribution 𝜋 describes the probability of
starting in a given state.

An example of a HMM is a weather model where the hidden
state represents the actual weather (sunny, rainy, or cloudy),
but we only observe indirect signals, such as whether someone
is carrying an umbrella or wearing sunglasses.

3.2 Markov Chain
A MCs, named after Andrei Markov, is a stochastic model
widely used in different fields of study [8].

Definition 2 (Markov Chain). A MC is a tuple ℳ =
(𝑆, 𝐿, 𝜔, 𝜏, 𝜋) identical to the HMM structure above except that
the emission function is deterministic: for every 𝑠 ∈ 𝑆 there is a
single label 𝑙 = 𝜔(𝑠) emitted with probability 1.

In other words, the emission function 𝜔 is a function that
maps each state to a single label 𝑙 ∈ 𝐿, meaning that each state
emits exactly and only one label. Two distinct states may emit
the same label.

An example of a MC is a board game where a player moves
between squares based on dice rolls. Each square corresponds
to a state, the dice rolls determine the transition probabilities.

3.3 Conversion between MCs and HMMs
In this section, we will discuss the conversion between MCs
and HMMs. This conversion is important because it allows us
to use the same algorithms and techniques from the original
CuPAAL implementation for both model types, even though
they have different properties.

In our case, we’re interested in trace-equivalent models. By
trace-equivalent, we mean that the probability distribution over
observed sequences is the same for both models. i.e. the labels
emitted by moving through the probabilistic models follow the
same distribution.

From the definition of a MC, we can see that it is a special
case of an HMM where the emission function is deterministic,
which makes this conversion very simple.

Definition 3 (Markov Chain to Hidden Markov Model). For
each MCℳ = (𝑆, 𝐿, 𝜔, 𝜏, 𝜋), there exists a trace-equivalent HMM
ℳ′ = (𝑆′, 𝐿′, 𝜔′, 𝜏′, 𝜋′), where:

∙ 𝑆′ = 𝑆.
∙ 𝐿′ = 𝐿.

∙ 𝜔′(𝑠)(𝑙) = {
1 𝑙 = 𝜔(𝑠)
0 otherwise

∙ 𝜏′ = 𝜏.
∙ 𝜋′ = 𝜋.

The only difference in this case is the structure of the
emission functions, thus preserving the probabilistic trace
equivalence, i.e., for an arbitrary trace 𝑂 ∈ 𝐿∗ we have
𝑃[𝑂 ∣ℳ] = 𝑃[𝑂 ∣ℳ′].

3.4 Baum-Welch Algorithm

The BW is a special case of the Expectation-Maximization (EM)
framework used to estimate the parameters of a HMM given a
set of observed sequences.

Since the underlying states are not directly observable, the
algorithm iteratively refines the model parameters 𝜋, 𝜔, and 𝜏
to maximize the likelihood of the observations. Each iteration
of the algorithm consists of two steps:

E-step Compute the expected values of the hidden variable
given the current parameters.

M-step Update the model parameters to maximize the
expected complete-data log-likelihood.

Convergence is typically achieved when the change in the
likelihood (or parameters) between iterations falls below a
threshold [8].

We can represent the parameters of a HMM as matrices for
computational efficiency.

They are defined as follows:

𝜋𝜋𝜋 is the initial state distribution vector, where 𝜋𝑖 =
𝜋(𝑠𝑖) is the probability of starting in state 𝑠𝑖 , this is
a column vector of size |𝑆|.

𝜏𝜏𝜏 is the transition matrix, where 𝜏𝑖𝑗 = 𝜏(𝑠𝑖)(𝑠𝑗) is the
probability of transitioning from state 𝑠𝑖 to state 𝑠𝑗 ,
this is a square matrix of size |𝑆| × |𝑆|.

𝜔𝜔𝜔 is the emission matrix, where 𝜔𝑖𝑗 = 𝜔(𝑠𝑖)(𝑙𝑗) is the
probability of emitting label 𝑙𝑗 given state 𝑠𝑖 , this is
a matrix of size |𝑆| × |𝐿|.

To illustrate our symbolic implementation, we describe a
single Baum-Welch iteration in terms of matrix operations,
assuming familiarity with the algorithm. For an introductory
treatment, see [7, 12].

Let ℳ denote the current HMM hypothesis and let 𝑂 =
𝑜1 … 𝑜𝑇 be a sequence of observations, where each 𝑜𝑡 ∈ 𝐿
and the observation sequence has the length 𝑇. Suppose ℳ
has 𝑛 states and 𝑚 labels, i.e., 𝑆 = 𝑠1,… , 𝑠𝑛, with parameters
represented as follows:

∙ 𝜋𝜋𝜋 ∈ [0, 1]𝑛 is the initial state distribution column vector.
∙ 𝜏𝜏𝜏 ∈ [0, 1]𝑛×𝑛 is the transition probability matrix.
∙ 𝜔𝜔𝜔 ∈ [0, 1]𝑛×𝑚 is the emission probability matrix.

The forward and backward algorithms are implemented
using dynamic programming, as shown in Listing 2. For a
given time step 𝑡, let 𝜔𝜔𝜔(𝑡) be the column vector of emission
probabilities for label 𝑜𝑡 for each state, and ⊙ the Hadamard
(element-wise) product.

The procedures in Listing 2 compute the column vectors
𝛼𝛼𝛼(𝑡) and 𝛽𝛽𝛽(𝑡) ∈ [0, 1]𝑛 for 𝑡 = 1…𝑇 which are later used to
compute the coefficients 𝛾𝛾𝛾(𝑡) ∈ [0, 1]𝑛 and 𝜉𝜉𝜉(𝑡) ∈ [0, 1]𝑛×𝑛 as
follows:
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Forward-Algorithm
1 𝛼𝛼𝛼(1) = 𝜔𝜔𝜔(1)⊙𝜋𝜋𝜋
2 for 𝑡 = 2 to 𝑇
3 𝛼𝛼𝛼(𝑡) = 𝜔𝜔𝜔(𝑡)⊙

(
𝜏𝜏𝜏⊤𝛼𝛼𝛼(𝑡 − 1)

)

Backward-Algorithm
1 𝛽𝛽𝛽(𝑇) = 𝟏
2 for 𝑡 = 𝑇 − 1 to 1
3 𝛽𝛽𝛽(𝑡) = 𝜏𝜏𝜏 (𝛽𝛽𝛽(𝑡 + 1)⊙𝜔𝜔𝜔(𝑡 + 1))

Listing 2. Computation of the forward and backward coefficients

𝛾𝛾𝛾(𝑡) = 𝑃[𝑂|ℳ]−1 ⋅ 𝛼𝛼𝛼(𝑡)⊙𝛽𝛽𝛽(𝑡) (1)
𝜉𝜉𝜉(𝑡) = (𝑃[𝑂|ℳ]−1 ⋅ 𝜏𝜏𝜏)⊙

(
𝛼𝛼𝛼(𝑡)⊗ (𝛽𝛽𝛽(𝑡 + 1)⊙𝜔𝜔𝜔(𝑡 + 1))⊤

)
(2)

Here, ⊗ is the Kronecker product and the probability
𝑃[𝑂|ℳ] to observe 𝑂 inℳ is computed as 𝟏⊤𝛼𝛼𝛼(𝑇). We calculate
𝛾𝛾𝛾(𝑡) from 𝑡 = 1 to 𝑇 and 𝜉𝜉𝜉(𝑡) from 𝑡 = 1 to 𝑇 − 1.

Finally, the initial probability vector, the transition probabil-
ity matrix and emission matrix and are updated as follows:

�̂�𝜋𝜋 = 𝛾𝛾𝛾(1) (3)

�̂�𝜔𝜔 = (𝟏⊘𝛾𝛾𝛾) •
⎛
⎜
⎝

𝑇∑

𝑡=1
𝛾𝛾𝛾(𝑡)⊗ [[𝑜𝑡]]

⎞
⎟
⎠

(4)

�̂�𝜏𝜏 = (𝟏⊘𝛾𝛾𝛾) • 𝜉𝜉𝜉 (5)

Where • is the transposed Khatri-Rao product (i.e., row-
by-row Kronecker product), and [[𝑜𝑡]] = ([[𝑜𝑡 = 𝑙]])𝑙∈𝐿 is the
one-hot encoding of the observation 𝑜𝑡, meaning that it is a row
vector of size |𝐿| with a 1 in the position corresponding to the
observation 𝑜𝑡 and 0 elsewhere. ⊘ is the element-wise division,
and ⊗ is the Kronecker product. The 𝛾𝛾𝛾 and 𝜉𝜉𝜉 are defined as
follows:

𝛾𝛾𝛾 =
𝑇∑

𝑡=1
𝛾𝛾𝛾(𝑡) (6)

𝜉𝜉𝜉 =
𝑇−1∑

𝑡=1
𝜉𝜉𝜉(𝑡) (7)

These update rules form the standard BW for training
HMMs on a single observation sequence. However, the ap-
proach can be naturally extended to multiple sequences.

The BW algorithm runs until convergence, in this case until
the difference in log-likelihood between iterations is less than
𝓁(ℳ;𝑂) − 𝓁(ℳ̂;𝑂) < 𝜖. The log-likelihood of an iteration can
be calculated using the 𝛼 probabilities in this way:

𝓁(ℳ;𝑂) = log
𝑆∑

𝑠=1
𝛼𝛼𝛼(𝑇)𝑠 (8)

3.5 Multiple Observation Sequences

Suppose we are given a multiset of independently identically
distributed (i.i.d.) observation sequences 𝒪 = 𝑂1, 𝑂2,… , 𝑂|𝒪|,
where each 𝑂𝑖 = (𝑜𝑖1, 𝑜𝑖2,… , 𝑜𝑖𝑇) is of length 𝑇. The E-step

remains unchanged: for each sequence, we compute the
corresponding 𝛼𝛼𝛼𝑖(𝑡), 𝛽𝛽𝛽𝑖(𝑡), 𝛾𝛾𝛾𝑖(𝑡), and 𝜉𝜉𝜉𝑖(𝑡) values independently.

In the M-step, we aggregate statistics across all sequences to
update the parameters. Specifically, we define:

𝛾𝛾𝛾 =
|𝒪|∑

𝑖=1

𝑇∑

𝑡=1
𝛾𝛾𝛾𝑖(𝑡) (9)

𝜉𝜉𝜉 =
|𝒪|∑

𝑖=1

𝑇−1∑

𝑡=1
𝜉𝜉𝜉𝑖(𝑡) (10)

With these aggregate quantities, the update rules for the
initial distribution (see Equation 3) and transition matrix
(see Equation 5) remain unchanged, because they are already
defined in terms of the sum over all sequences. However, the
emission matrix update needs to account for all sequences.

The emission matrix is updated as follows:

𝜔𝜔𝜔𝑠(𝑜) = (𝟏⊘𝛾𝛾𝛾) •
⎛
⎜
⎝

|𝒪|∑

𝑖=1

𝑇∑

𝑡=1
𝛾𝛾𝛾𝑖(𝑡)⊗ [[𝑜𝑖𝑡]]

⎞
⎟
⎠

(11)

This mirrors the single-sequence case (see Equation 4)
but extends the summation in the left side of the Kronecker
product to cover all sequences and all time steps. This allows
us to compute the emission probabilities for each state across
all sequences, ensuring that the model captures the overall
distribution of observations.

3.6 Baum-Welch Algorithm for Markov Chains
Since MCs can be seen as HMMs with deterministic emissions,
where each state emits a unique observation with probability 1,
the BW simplifies accordingly when applied to MCs.

In this case:

∙ The forward and backward algorithms are computed
identically to the HMM case, but without weighting by
emission probabilities, as these are implicitly handled
by the observation sequence.

∙ The E-step computations for 𝛾𝛾𝛾(𝑡) and 𝜉𝜉𝜉(𝑡) remain
structurally the same, though emission terms are omitted
due to determinism.

∙ The M-step updates for the initial distribution 𝜋𝜋𝜋 and
the transition matrix 𝜏𝜏𝜏 are unchanged.

∙ The emission matrix 𝜔𝜔𝜔 is not updated, as it is fixed by
the model’s structure and need not be learned.

This simplification avoids unnecessary computation and
reflects the reduced uncertainty in the model: there is no need
to marginalize over emissions, as each state deterministically
produces a known label. Consequently, the BW becomes more
efficient when applied to MCs.

3.7 Decision Diagrams
Binary Decision Diagrams (BDDs) are data structures for
efficiently representing and manipulating Boolean functions.
They are a compressed representation of truth tables, capturing
the logical structure of a function in a graph-based format
by eliminating redundancy, reducing memory usage, and
improving computational efficiency [13].

A BDD is a directed acyclic graph derived from a decision
tree, where each non-terminal node represents a Boolean
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variable, edges correspond to binary assignments (0 or 1), and
terminal nodes store function values (0 or 1). To reduce the
size of the decision tree, BDDs exploit redundancy by merging
equivalent substructures, resulting in a canonical form (when
reduced and ordered) that allows for efficient operations such
as function evaluation, equivalence checking, and Boolean
operations [13].

BDDs have been widely used in formal verification, model
checking, and logic synthesis due to their ability to compactly
represent large Boolean functions while maintaining efficient
computational properties. However, in rare cases BDDs can
suffer from exponential blowup. This can occur particularly
when dealing with functions that lack inherent structure or
when representing numerical computations that go beyond
Boolean logic.

3.8 ADDs
Algebraic Decision Diagrams (ADDs) generalize the concept
of BDDs by allowing terminal nodes to take values beyond
Boolean constants (0 and 1). Instead of restricting values to
true/false, ADDs can store arbitrary numerical values, making
them useful for representing and manipulating functions
over discrete domains [14]. This generalization enables the
efficient representation of functions such as cost functions [15],
probabilities [16], and other numerical relationships that arise
in probabilistic reasoning.

The fundamental structure of an ADD remains similar to a
BDD, where a decision tree is compacted by merging redundant
substructures. However, instead of performing Boolean opera-
tions, ADDs allow for arithmetic operations such as addition
and multiplication, making them well-suited for representing
matrices [14].

4 IMPLEMENTATION

This section provides an overview of CuPAAL’s implementation,
including the Baum-Welch (BW) algorithm, and how CuPAAL
is integrated into Jajapy, creating Jajapy 2.

4.1 Motivation for CuPAAL
The motivation for CuPAAL is to provide a more efficient and
scalable implementation of the BW algorithm for parameter
estimation. Specifically, we aim to improve the performance of
the algorithm when handling large and complex models, and
address the existing limitations of the BW algorithm in Jajapy.

4.1.1 Recursive vs. Matrix vs. ADD-based Approaches
When working with the BW algorithm, different approaches
can be taken to optimize computational efficiency. Three
common strategies are recursive, matrix-based, and Algebraic
Decision Diagram (ADD)-based approaches, each with distinct
advantages and limitations.

∙ Recursive Approach: Conceptually simple, recursion
follows a divide-and-conquer strategy and makes use of
a dynamic programming approach. Previous calculations
are used to build upon future calculations. These results
are stored in a list or a map, allowing them to be accessed
when needed [17, Chapter 4].

∙ Matrix Representation: Reformulating algorithms
using matrix operations leverages algebraic properties

for parallel computation and efficient processing. By
building upon the recursive approach, matrices provide
an efficient method for accessing stored results, leading
to faster computations overall [17, Chapter 4, 15 & 28].

∙ ADD-based Approach: ADDs provide a compact rep-
resentation that eliminates redundancy in recursive
computations. By reusing previously computed sub-
structures, they improve efficiency and reduce memory
overhead [14]. Compared to matrices, ADDs can offer a
more space-efficient alternative for structured data while
extending Binary Decision Diagram (BDD) techniques
to handle both Boolean and numerical computations.

In this work, we investigate the advantages of ADD-based
approaches for solving complex problems, with a focus on
parameter estimation in Markov Chain (MC) and Hidden
Markov Model (HMM). We compare the performance of ADD-
based algorithms against recursive-based implementations,
highlighting the advantages of using ADDs for efficient compu-
tation and memory management.

4.2 What is CuPAAL

CuPAAL is a C++ library that implements the BW algorithm
for parameter estimation, which has evolved over time.

The initial version of CuPAAL was written in C and
called SUDD, a partial implementation of the BW algorithm
that utilized ADDs. This version was primarily focused on
demonstrating the efficiency of ADDs for parameter estimation
problems and was not fully functional. The next iteration was
called CuPAAL, which was a complete implementation of the
BW algorithm using ADDs. However, it only supported HMMs
and was only designed to make use of a single observation.

The current version of CuPAAL has been extended to
support MCs and can handle multiple observations. This
version of CuPAAL is designed for standalone use, as well
as in conjunction with Jajapy, facilitating easy integration and
application in parameter estimation problems.

The following sections provide an overview of what CuPAAL
is and its capabilities.

4.2.1 What Does Cupaal Contain

Throughout all its iterations, CuPAAL has utilized the Colorado
University Decision Diagram (CuDD) library - a library for
implementing and manipulating BDDs and ADDs developed at
the University of Colorado.

Implemented in C, the CuDD library ensures high-
performance execution and can be seamlessly integrated into
C++ programs, which we utilize in CuPAAL. By leveraging
the CuDD library, we demonstrate the benefits of ADD-based
approaches for solving parameter estimation problems in MCs.

The CuDD library is used to store ADDs and perform opera-
tions on them. Its optimized algorithms and efficient memory
management enable symbolic handling of large and complex
matrices, significantly improving performance compared to
traditional methods.

We have not modified or extended the CuDD library directly,
but we have added functions that wrap several functions of
CuDD. All functionality used in our implementation is available
through the standard CuDD library.
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4.2.2 From Prism to Cupaal
In the current iteration of CuPAAL, it is possible to use Prism
models as input to the BW algorithm. The models are encoded
from Prism models to CuPAAL models, which is achieved by
parsing the Prism model into Jajapy using Stormpy.

The Jajapy model comprises a transition matrix, a label
matrix, and an initial state vector. The model is passed to
CuPAAL, where these matrices and vectors are encoded into
ADDs as a function 𝑓∶ {0, 1}𝑛 × {0, 1}𝑛 → 𝑅.

The Transition matrix is a 𝑆 × 𝑆 matrix, where 𝑆 = 𝑆𝑡𝑎𝑡𝑒𝑠,
and is encoded to an ADD by each row and column with a
binary value. This value is determined based on the size of the
matrix, 𝑛 = ⌈𝑙𝑜𝑔2(𝑆)⌉.

The label matrix is a 𝑆 × 𝐿 matrix, where 𝐿 = 𝐿𝑎𝑏𝑒𝑙𝑠, and
since there is no guarantee that 𝑆 = 𝐿, the encoding is handled
differently. The matrix is instead treated as a list of vectors.

Each vector is encoded as square matrices, where each row
or column (depending on the vector type) is duplicated, which
is then encoded to a list of ADDs.

Knowing the exact dimensions of matrices and that they are
square helps to simplify some of the symbolic operations. An
example of this is provided in subsubsection 4.2.3.

The Initial state vector is encoded similarly to the label
matrix, but only as a single ADD.

4.2.3 Kronecker Product Implementation
The Kronecker product is implemented in CuPAAL using the
row and column duplication method mentioned in subsubsec-
tion 4.2.2.

The structure of Decision Diagrams in CuPAAL, where
keeping track of all the new binary values used for encoding
from a matrix to an ADD, can add a layer of complexity
for calculation. Especially when computing operations that
translate matrices to new dimensions, such as the Kronecker
product.

Here we present a variation of the Kronecker product that
only works between vectors - specifically one row and one
column vector, as it relies on the structure of the vectors being
expanded into square matrices.

This matrix-based approach enables efficient symbolic
operations, as the Kronecker product can be calculated by
taking the Hadamard product between a column matrix ADD
and a row matrix ADD, simplifying what would otherwise be a
more complex operation.

An example of this can be seen with the two vectors �̂� and
�̂�:

Let �̂� = [12] and �̂� =
[
3 4

]
.

The Kronecker product of these two vectors is computed as
follows:

�̂� ⊗ �̂� = [1 ⋅ 3 1 ⋅ 4
2 ⋅ 3 2 ⋅ 4] = [3 4

6 8] . (12)

Another way to calculate the Kronecker product is to expand
the vectors into matrices. �̂� and �̂� are expanded to be matrices,
similar to how the matrix was treated as a list of vectors and
then expanded to square matrices, as seen with the Label
matrix.

Let 𝐀 = [1 1
2 2] and 𝐁 = [3 4

3 4].

main.cpp
CuPAAL

BW.cpp

bindings.cpp

cupaal.exe

bindings.so

fit
Jajapy

Fig. 2. Architecture of CUPAAL combined with JAJAPY.

The Kronecker product of �̂� and �̂� can also be calculated,
by using the Hadamard product of 𝐀 and 𝐁. This is done as
follows:

𝐀⊙ 𝐁 = [1 ⋅ 3 1 ⋅ 4
2 ⋅ 3 2 ⋅ 4] = [3 4

6 8] . (13)

Hereby showing that the Hadamard product can be used to
compute the Kronecker product between two vectors, by using
the row and column duplication method.

4.3 Implementation to Jajapy
This section provides an overview of how CuPAAL is imple-
mented in Jajapy, utilizing bindings between C++ and Python.
Figure 2 shows the overall architecture of the implementation.

CuPAAL consists of two main components: the main
function and the BW library. Both of these are compiled into an
executable program called cupaal.exe, which can be used to
run the BW algorithm on a given model.

4.3.1 Bindings
To implement CuPAAL into Jajapy, we create bindings be-
tween C++ and Python using the pybind11 library [18],
which allows us to call C++ functions from Python, enabling
us to use CuPAAL in Jajapy.

In the code examples, some parts have been removed for
brevity and clarity.

We create a C++ bindings file that uses the BW library
from CuPAAL and define the function we want to expose
to Python; we call this function 𝑐𝑢𝑝𝑎𝑎𝑙_𝑏𝑤_𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐, seen
in Listing 3. This function takes model parameters from a
Jajapy model as input and transforms them for use in CuPAAL.
The transformation is done at line 3, where all the parameters
are inputted to create a Markov Model object, which is then
used to run the BW algorithm at line 6.

Each of the values relevant to the BW algorithm is then
passed into the model_data object, which is subsequently
returned to Jajapy, as seen in lines 10 through 15. These are
the initial distribution, the transitions and the emissions.

The C++ bindings file is then compiled to a shared
library, which can be imported into Jajapy. Jajapy can call
the 𝑐𝑢𝑝𝑎𝑎𝑙_𝑏𝑤_𝑠𝑦𝑚𝑏𝑜𝑙𝑖𝑐 function, which will then call the
CuPAAL implementation of the BW algorithm.

We create a new function in Jajapy, called
cupaal_bw_symbolic, which is used to call the CuPAAL
implementation of the BW algorithm, as seen in Listing 5.
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1 // Some parameters have been omitted for brevity
2 cupaal_markov_model

cupaal_bw_symbolic(vector<string>& states,
vector<string>& labels,
vector<vector<string>>& observations,
vector<double>& initial_distribution,
vector<double>& transitions, vector<double>&
emissions, int max_iterations = 100, double
epsilon = 1e-2){

→

→

→

→

→

→

→

3 MarkovModel model(states, labels,
initial_distribution, transitions,
emissions, observations);

→

→

4 cupaal_markov_model model_data;
5 chrono::seconds time = chrono::seconds(3600);
6 model.baum_welch_multiple_observations(
7 max_iterations, epsilon, time);
8
9 // output and result path omitted for brevity
10 model_data.initial_distribution =

model.initial_distribution;→

11 model_data.transitions = model.transitions;
12 model_data.emissions = model.emissions;
13
14 Cudd_Quit(model.manager);
15 return model_data;
16 }

Listing 3. C++ bindings file for CuPAAL

1 void baum_welch_multiple_observations(
2 unsigned int max_iterations = 100,
3 double epsilon = 1e-6,
4 chrono::seconds time = chrono::seconds(3600));

Listing 4. Prototype of the function used to run the BW algorithm on
multiple observations in CuPAAL.

This function is used to prepare the model parameters
from Jajapy so they are in the correct format for CuPAAL.
The preparation is done at lines 7 through 20; after this,
the CuPAAL implementation is called at line 22, where the
cupaal_bw_symbolic function is called with the prepared
parameters, giving the CuPAAL model as a return value.

The values are then extracted from the CuPAAL model and
assigned to the Jajapy model, as seen in lines 23 through 25.
where they are reshaped to be in line with Jajapy.

The fit function in Jajapy is modified to call the
_bw_symbolic function when a new parameter called
symbolic is set to true, as seen in Listing 6.

A check is made to see if the symbolic parameter is set to
true at line 4. When the parameter is true, the Jajapy model
will call the Listing 5 function, which will then call the CuPAAL
implementation of the BW algorithm.

4.4 Integration Discussion

The integration of CuPAAL into Jajapy has been successful,
allowing us to leverage the BW algorithm for parameter
estimation for HMMs and MCs.

The decision to use pybind11 for creating bindings between
C++ and Python has proven effective, as it allows us to easily
call C++ functions from Python.

The exact implementation of the symbolic fit function in
Jajapy, shown in Listing 6, is to be discussed with the Jajapy
creator, and in the final integration into Jajapy some changes
are expected to be made.

The integration of CuPAAL into Jajapy has been successful,
allowing us to leverage the BW algorithm for parameter
estimation for HMMs and MCs.

5 EXPERIMENTS

In this section, we present an evaluation comparing the
performance of two implementations of the Baum-Welch (BW)
algorithm: the original version from Jajapy and the new
symbolic implementation introduced in Jajapy 2.

For this comparison, we use a Markov Chain (MC) model,
taken from the QComp benchmark set [19], which is a
collection of models used for quantitative verification and
learning tasks. The goal is to assess scalability of the symbolic
implementation and its performance in terms of runtime and
accuracy.

We designed three experiments to evaluate the performance
of the symbolic implementation of the BW algorithm in Jajapy
2:

∙ Scalability — Evaluating how the symbolic implemen-
tation scales with increasing model size.

∙ Accuracy— Comparing the accuracy of the symbolic
implementation against the original recursive implemen-
tation.

∙ Extra Scalability — Evaluating the scalability of the
symbolic implementation when adjusting the initializa-
tion of the model hypothesis.

The experiments are designed to answer the following
research questions:

∙ Question 1: How does runtime scale as model size
increases for Jajapy 2 vs Jajapy?

∙ Question 2: What is the relative estimation accuracy of
the symbolic implementation in Jajapy 2 compared to
the original recursive implementation in Jajapy?

∙ Question 3: How much does an informed initialization
accelerate Jajapy 2?

The experiments are designed to provide insights into the
performance and scalability of the symbolic implementation
of the BW algorithm in Jajapy 2, and to compare it with the
original recursive implementation in Jajapy.

5.1 Model

The model used in the experiments is the leader sync model [20],
which is a Discrete Time Markov Chain (DTMC) model from
the QComp benchmark set [19], which is a collection of models
used for quantitative verification and learning tasks.

The leader sync model is a distributed system model
that simulates the behavior of a group of processors that
need to choose a leader among themselves. The model’s
size ranges from 26 to 1050 states, depending on the
number of processors in the system, the states increase
{26, 69, 147, 61, 274, 812, 141, 1050}.

The non-linear progression in model size arises because
the QComp benchmark defines model variants using two
parameters: the number of processors and the maximum
number a leader can select to be elected.

The model is chosen because of its scalability, making
it suitable for evaluating the performance of the symbolic
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1 def _bw_symbolic(self, max_iteration = 100, epsilon = 1e-2, outputPath = "", resultPath = ""):
2 try:
3 import libcupaal_bindings
4 except ModuleNotFoundError:
5 print("Cannot find module")
6
7 states = [str(i) for i in range (self.h.nb_states)]
8 labels = list(set(self.h.labelling))
9 observations = []
10 for times, sequences in zip(self.training_set.times, self.training_set.sequences):
11 for i in range(times):
12 observations.append(list(sequences))
13 initial_state = self.h.initial_state.tolist()
14 transitions = self.h.matrix.flatten().tolist()
15 emissions = zeros((len(labels), self.h.nb_states))
16 for row in range(len(labels)):
17 for col in range(self.h.nb_states):
18 if self.h.labelling[col] == labels[row]:
19 emissions[row][col] = 1
20 emissions = emissions.flatten().tolist()
21
22 cupaal_model = libcupaal_bindings.cupaal_bw_symbolic( states, labels, observations, initial_state,

transitions, emissions, max_iteration, epsilon, outputPath, resultPath)→

23 self.h.initial_state = array(cupaal_model.initial_distribution)
24 self.h.matrix = array(cupaal_model.transitions).reshape( self.h.nb_states, self.h.nb_states)
25 self.h.emissions = array(cupaal_model.emissions).reshape( len(labels), self.h.nb_states)
26 return self.h

Listing 5. Jajapy’s implementation of the BW algorithm using CuPAAL.

1 # Some parameters have been removed for brevity
2 def fit(self, output_file: str, output_file_prism:

str, epsilon: float, max_it: int, symbolic:
bool):

→

→

3 # Removed preparation and settings number of
processes, for brevity→

4 if symbolic :
5 return self._bw_symbolic(max_it, epsilon,

output_file, output_file_prism)→

6 else:
7 return self._bw(max_it, pp, epsilon,

output_file, output_file_prism,
verbose, stormpy_output, return_data)

→

→

Listing 6. Jajapy’s fit function, which calls the CuPAAL implementation of
the BW algorithm when symbolic is set to true.

implementation of the BW algorithm in Jajapy 2. The model
was also simple to understand and analyze, allowing us to add
more labels to the model to make it suitable for the experiments.

The labels added to the model are shown in Listing 7.

1 label "reading" = s1=1&s2=1&s3=1;
2 label "deciding" = s1=2&s2=2&s3=2;
3 label "elected" = s1=3&s2=3&s3=3;
4
5 P>=1 [ F "elected" ]
6 R{"num_rounds"}=? [ F "elected" ]

Listing 7. Labels added to the leader sync model and properties checked.

5.2 Experimental Setup
All experiments were conducted on the same machine, see
Appendix A for full specs and the python environment.

The following steps were taken to set up the experiments:

1) Load the PRISM model
2) Generate 𝑁seq ∈ {25, 50, 100} observation sequences of

length 20.

3) Create a random initial MC using MC_random.
4) Run BW for up to 4 hours or until the log-likelihood

difference converges to a threshold of 0.01.
5) Record runtime and save the model.
We save both the initial models and observations in files,

to ensure both implementations use inputs by default. The
generation of the training set and the randomization of the
model is done using Jajapy, which provides a convenient way
to generate random models and training sets. The training set
is generated by creating a set of observation sequences from
the original model, which is then used to train the randomized
model.

We then run the BW algorithm on the randomized model
and the training set for both the original recursive implementa-
tion in Jajapy and the symbolic implementation in Jajapy 2.
We run each implementation for each model size and number
of observation sequences ten times to obtain average results.

The results of the experiments are recorded, including the
runtime, number of iterations, log-likelihood, and error of the
estimated transition probabilities.

We do not measure memory usage, as the symbolic im-
plementation is implemented in C++ using Python bindings
making it difficult to measure memory usage accurately,
therefore we focus on runtime and accuracy.

5.3 Experiment 1: Scalability
The first experiment evaluates the scalability of the symbolic
implementation of the BW algorithm in Jajapy 2. The goal is
to measure the runtime performance of the symbolic imple-
mentation as the size of the model increases. The experiment
measures the average runtime of the BW algorithm for each
model size and number of observation sequences.

5.4 Experiment 2: Accuracy
The second experiment evaluates the accuracy of Jajapy 2
compared to the original Jajapy. The goal is to measure
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the accuracy of the symbolic implementation in terms of
log-likelihood and absolute error of the estimated transition
probabilities. The absolute error is defined as:

Error = |𝑒 − 𝑟|,

where 𝑒 is the estimated transition probability and 𝑟 is the
reference value from the original model. We use the results
from the first experiment, and compare the log-likelihood and
absolute error of the properties estimated by the symbolic
implementation against the original recursive implementation.

The properties used in this experiment are shown in
Listing 7, the properties are taken from the QComp benchmark
set [19].

5.5 Experiment 3: Extra Scalability

The third experiment evaluates the scalability of the symbolic
implementation in Jajapy 2 when adjusting the initialization
of the model hypothesis.

This experiment aims to measure the scalability of Jajapy 2
under circumstances that are theoretically good for the symbolic
implementation. The more repeated values values the transition
matrix contains, the sparser the Algebraic Decision Diagram
(ADD) representing it will be. By initializing the transition
matrix with a reduced amount of different values, we hope that
the symbolic approach might benefit.

For the first experiment, the transition matrix was initialized
randomly. For this experiment instead, we only use |𝑆| different
values in the transition matrix. It is expected that this improves
the speed of each iteration of the BW algorithm, as it reduces
the number of unique computations necessary for the symbolic
implementation.

6 RESULTS

In this section, we present the results of our experiments,
which are divided into two main parts: the first part focuses
on the scalability of Jajapy and CuPAAL in terms of time and
scalability, while the second part evaluates the accuracy of both
tools.

The experiments were conducted on a machine with the
specifications and environment listed in section A.

6.1 Scalability

These results are the time taken to train a model, based on
two parameters: the number of states, and the length of the
observations in the model increasing.

The results for the leader sync model are displayed in Table 1
and Figure 3, and show the time it takes to train a model, given
the number of states and observation length. Only the training
time is considered; the initialization of the programs is not a
factor in these numbers.

In Figure 3, simple planes are fit with linear regression from
the data in Table 1. This is not an attempt to say anything
definitive about the degrees of the scaling, but instead to show
the generally observable trend.

Contrary to our expectations, the data does not show a
clear difference in the time taken to train the leader sync model
between Jajapy and CuPAAL for Discrete Time Markov Chains
(DTMCs).

TABLE 1
Leader sync model variations in training time in seconds.

model states length jajapy (s) cupaal (s)
3.2 26 25 1.38 0.26
3.2 26 50 1.95 0.14
3.2 26 100 4.09 0.23
3.3 69 25 7.95 2.46
3.3 69 50 11.20 1.59
3.3 69 100 19.65 1.75
3.4 147 25 27.10 8.54
3.4 147 50 42.57 9.20
3.4 147 100 84.02 9.90
4.2 61 25 15.68 11.18
4.2 61 50 24.87 13.56
4.2 61 100 52.11 11.24
4.3 274 25 194.88 231.28
4.3 274 50 414.30 379.21
4.3 274 100 447.83 117.78
4.4 812 25 1846.68 3324.83
4.4 812 50 2290.28 1848.44
4.4 812 100 5652.14 3447.56
5.2 141 25 95.59 104.71
5.2 141 50 342.05 553.66
5.2 141 100 798.73 982.97
5.3 1050 25 4586.86 10906.91
5.3 1050 50 7791.95 10405.75
5.3 1050 100 9821.74 5992.51

For very small models, the running time does not matter
too much, but we observe an initial overhead in Jajapy in
comparison to CuPAAL. This is likely related to the general
consensus that Python is a slower language than C in general.

Generally, more states mean longer running time, but
interestingly, variations with similar number of states may
have very different training times. The most obvious example
is the 3.4 and 5.2 models, with 147 and 141 states respectively.
The 5.2 model is much slower, especially in CuPAAL, showing
a ~10 times increase in training time, despite having slightly
fewer states.

Initially, we only had data for observations of length 25, and
the data under those conditions suggested that Jajapy scaled
quite a bit better than CuPAAL.

To explore this behaviour, we extended the experiment
to contain data for observations of different lengths, and
now our observations are more in line with our expectations.
Jajapygets slower at a pace roughly linear with the length of
the observations; doubling the observation length doubles the
run time of Jajapy. This is not the case for CuPAAL, where
we do not see any particular increase in running time as the
observation length increases.

In fact, looking at Figure 4 and Figure 5, the CuPAAL
runtimes look a little strange.

6.2 Accuracy

This experiment compares the accuracy of CuPAAL and Jajapy
in learning the leader sync model. Specifically, we model check
how many rounds it takes, for each model to select a new leader,
from the original model, Jajapy and CuPAAL using properties
from Listing 7.

Table 2 shows the results. The table includes the number
of rounds for the original model (column rounds), and the
learned models from Jajapy, and CuPAAL. The column ∆
shows the difference between CuPAAL and Jajapy, while 𝜙
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Fig. 3. Plot of the run time of JAJAPY and CUPAAL for the leader sync models, given the number of states and the length of the observations. The
planes are linear regression fits to indicate the directions of the trends for the datapoints of similar color.

shows the relative error between Jajapy and the true value
from the original model.

The results show that both CuPAAL and Jajapy closely
match the true model. For example, in the row for model 3.2
with 25 observations, the original model takes 1.33 rounds, and
both CuPAAL and Jajapy predict 1.28 rounds.

In the same row, the difference ∆ is 0.00, meaning the both
implementations learned the same model. The relative error 𝜙
is 0.04, indicating a very small deviation from the true value.
This pattern hold across all models, with CuPAAL and Jajapy
producing nearly identical results, with only minor differences
compared to the true values.

In conclusion, these results show that CuPAAL is a reliable
and accurate implementation of the Baum-Welch (BW) algo-
rithm, matching the performance of Jajapy in learning the
model.

6.3 Extra Scalability

This section will cover the second experiment done for compar-
ing CuPAAL and Jajapy. This experiment explores the effect
of random and semi-random initial model parameters, as we
expect repeated values to be highly beneficial for CuPAAL’s
implementation.
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Fig. 4. CUPAAL runtimes with increasing observation length.
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Fig. 5. JAJAPY runtimes with increasing observation length.

Table 4 is the table that compares CuPAAL to Jajapy, and
the impact of random and semi-random initialization, in regards
to the time needed to learn the model.

Looking at the columns rand-ja and semi-ja which
show the impact of random and semi randon initialization for
Jajapy, there is no major impact between the two. But when
looking at the differences for CuPAAL it is clear that the semi-
random approach is generally faster than the completly random,
this becomes especially pronounced as the number of states for
the model increase.

We expected this to be the case, as with the number of
observations meant more repeated values, the semi random
initialization had a similar effect. This seems to partially aleviate
the poor scaling CuPAAL suffers from as the number of model
states increase.

Table Table 5, displays three models with a varrying number

TABLE 2
Leader sync model comparison of the average number of rounds inside.

ℳ |𝑂| rounds Jajapy CuPAAL ∆ 𝜙

3.2 25 1.33 1.28 1.28 0.00 0.04
3.2 75 1.33 1.30 1.30 0.00 0.02
3.2 100 1.33 1.28 1.28 0.00 0.04
3.3 25 1.12 1.23 1.23 0.00 0.09
3.3 50 1.12 1.11 1.11 0.00 0.01
3.3 100 1.12 1.13 1.13 0.00 0.00
3.4 25 1.07 1.08 1.08 0.00 0.01
3.4 50 1.07 1.09 1.09 0.00 0.02
3.4 100 1.07 1.11 1.11 0.00 0.04
4.2 25 2.00 2.11 2.12 -0.00 0.06
4.2 50 2.00 2.16 2.16 0.00 0.08
4.2 100 2.00 2.00 2.00 0.00 0.00
4.3 25 1.35 1.37 1.37 0.00 0.01
4.3 50 1.35 1.28 1.28 0.00 0.05
4.3 100 1.35 1.25 1.25 0.00 0.07
4.4 25 1.19 1.25 1.25 0.00 0.05
4.4 50 1.19 1.17 1.17 0.00 0.01
4.4 100 1.19 1.27 1.27 0.00 0.07
5.2 25 3.20 3.27 3.27 -0.00 0.02
5.2 50 3.20 3.06 3.06 -0.00 0.04
5.2 100 3.20 3.50 3.50 0.00 0.09
5.3 25 1.35 1.32 1.32 0.00 0.02
5.3 50 1.35 1.27 1.27 0.00 0.06
5.3 100 1.35 1.33 1.33 0.00 0.01
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Fig. 6. Model 4.2 - Runtime for random and semi-random

og states and observation sequences. This table is used to
highlight that the different methods of initialising model
parameters, has an impact of the number of iterations needed,
but not showing a clear strength in either method.

This is to be expected, as depending on how close or far
off, the values are to the learned model, has an impact on the
number of iterations needed. But it also showcases that there
is no impact on the loglikelihood, meaning that no matter the
method used the model learned is still equally close to the
correct model.

Figures Figure 6 Figure 7 Figure 8 give a visual repre-
sentation of how CuPAAL compares to Jajapybased on the
observation counts while using both random and semi-random
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TABLE 3
Experiment three results

ℳ |𝑂| i ran i semi s ran-ja s ran-cup s semi-ja s semi-cup 𝓁 ran 𝓁 semi s/i ran-ja s/i semi ja s/i ran-cup s/i semi-cup ja change cup change
4.2 25 18 16 15.68 11.12 13.26 7.87 -140.41 -140.41 0.87 0.83 0.62 0.49 -4.87 -20.34
4.2 50 17 20 24.87 13.56 28.32 12.54 -149.13 -149.13 1.46 1.42 0.80 0.63 -3.21 -21.41
4.2 75 17 18 36.02 9.72 38.62 10.54 -117.80 -117.80 2.12 2.15 0.57 0.59 1.27 2.41
4.2 100 17 18 52.11 11.24 53.75 10.95 -138.63 -138.63 3.07 2.99 0.66 0.61 -2.58 -8.04
4.3 25 18 18 194.88 231.28 190.65 194.04 -79.92 -79.92 10.83 10.59 12.85 10.78 -2.17 -16.10
4.3 50 18 18 414.30 379.21 414.95 308.81 -67.24 -67.25 23.02 23.05 21.07 17.16 0.16 -18.56
4.3 75 18 18 476.68 232.21 486.04 206.67 -65.71 -65.71 26.48 27.00 12.90 11.48 1.96 -11.00
4.3 100 18 18 447.83 117.78 441.40 118.17 -62.55 -62.55 24.88 24.52 6.54 6.57 -1.44 0.33
4.4 25 18 18 1846.67 3324.83 1793.90 3087.66 -62.55 -62.55 102.59 99.66 184.71 171.54 -2.86 -7.13
4.4 50 18 18 2290.28 1848.44 2239.18 1526.81 -48.49 -48.49 127.24 124.40 102.69 84.82 -2.23 -17.40
4.4 75 17 18 3017.72 1597.78 3177.81 1512.33 -52.26 -52.26 177.51 176.54 93.99 84.02 -0.55 -10.61
4.4 100 18 18 5652.14 3447.56 5586.23 2959.75 -65.71 -65.71 314.01 310.35 191.53 164.43 -1.17 -14.15
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Fig. 7. Model 4.3 - Runtime for random and semi-random
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Fig. 8. Model 4.4 - Runtime for random and semi-random

TABLE 4
Leader sync model variations in training time with random and

semi-random initial values.

ℳ |𝑆| |𝑂| rand-ja rand-cup semi-ja semi-cup
4.2 61 25 15.68 11.12 13.26 7.87
4.2 61 50 24.87 13.56 28.32 12.54
4.2 61 75 36.02 9.72 38.62 10.54
4.2 61 100 52.11 11.24 53.75 10.95
4.3 274 25 194.88 231.28 190.65 194.04
4.3 274 50 414.30 379.21 414.95 308.81
4.3 274 75 476.68 232.21 486.04 206.67
4.3 274 100 447.83 117.78 441.40 118.17
4.4 812 25 1846.67 3324.83 1793.90 3087.66
4.4 812 50 2290.28 1848.44 2239.18 1526.81
4.4 812 75 3017.72 1597.78 3177.81 1512.33
4.4 812 100 5652.14 3447.56 5586.23 2959.75

TABLE 5
Leader sync model variations in loglikelihood for random and

semi-random initial values.

ℳ |𝑆| |𝑂| iter(rand) iter(semi) 𝓁 rand 𝓁 semi
4.2 61 25 18 16 -140.41 -140.41
4.2 61 50 17 20 -149.13 -149.13
4.2 61 75 17 18 -117.80 -117.80
4.2 61 100 17 18 -138.63 -138.63
4.3 274 25 18 18 -79.92 -79.92
4.3 274 50 18 18 -67.24 -67.25
4.3 274 75 18 18 -65.71 -65.71
4.3 274 100 18 18 -62.55 -62.55
4.4 812 25 18 18 -62.55 -62.55
4.4 812 50 18 18 -48.49 -48.49
4.4 812 75 17 18 -52.26 -52.26
4.4 812 100 18 18 -65.71 -65.71

initialization.
These graphs showcase the general trend of CuPAAL

performing slightly better with a semi-random initialization,
where for Jajapy we observe there is no clear tendency for
what performes best.

Table Table 3 shows the seconds pr iteration to compute,
for CuPAAL and Jajapy for both random and semi-random
initialization. Jajapy is not noticable affected by either method,
giving a gain of about 1% when using the semi-random
initialization over the random approach, this can be explained
by coinsidence as the differences is negligable. CuPAAL does
have a slight gain when using the semi-random approach,
showcasing a gain of ∼ 11% less time needed pr. iteration
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compared to the completly random approach.
These results seem to indicate a gain for CuPAAL when

there are repeated values for the initialization. This lines up
well with our hypothesis that CuPAAL performs better when it
can leverage repeated values for it’s Algebraic Decision Diagram
(ADD) structure.

7 DISCUSSION

In this section we discuss the results presented in section 6 and
reflect on the performance of CuPAAL compared to Jajapy.

The results from the section 6 show that CuPAAL outper-
forms Jajapy in terms of run time as the observation length
increases. For models with few states, the run time is similar,
but as the number of states increases, the differences become
more pronounced. This indicates that CuPAAL is a better choice
for larger observation sequences, but Jajapy remains a better
choice for large models.

The experiment is conducted using a single model, leader
sync, which may not provide a comprehensive view of the
performance across different scenarios.

A more effective approach would have been to utilize
multiple models with varying characteristics and compare
their performance. This would allow for a more comprehensive
overview of CuPAAL’s performance compared to Jajapy.

Other models that were considered were the NAND and BRP
models, also from the qcomp benchmark set [19]. A broader
variety of models would provide a clearer insight into CuPAAL
and thereby display the strengths and weaknesses of CuPAAL.

The model could also have utilized a greater number of
states and observations; currently, the largest model contains
1,050 states and observation sequences of length 10.

Larger models were considered, but it was determined that
the largest model used was sufficient, given the time required
for parameter estimation.

We ran the experiments in a Docker container, which has
a maximum memory capacity of 16 GB. This limitation also
affected the experiments, as we sometimes ran out of memory
when experimenting with larger models - some models contain
a far greater amount of states, which could be further explored.

In subsection 5.5, the values for the initial model values
are not entirely random. Instead, they are designed to have
repeated values. This was done to display the known strengths
of CuPAAL.

This skews the model to favor CuPAAL, as the Algebraic
Decision Diagram (ADD) structure benefits from repeated
values and, therefore, will display results that indicate CuPAAL
as the stronger implementation.

This was done purely to research what was believed to be
a strength of CuPAAL and to further the discussion on when
CuPAAL is a good option to use over other tools, such as
Jajapy.

7.1 Implementation Discussion
CuPAAL displays clear benefits when working with repeated
values, but in general, it struggles to compete with Jajapy.

Previous work indicated that CuPAAL overall was a stronger
implementation, but with an entirely symbolic implementation,
some potential bottlenecks have been discovered.

Specifically in the update step of the Baum-Welch (BW)
algorithm, as when working with ADDs for just the 𝑎𝑙𝑝ℎ𝑎 and

𝑏𝑒𝑡𝑎 steps, CuPAAL performed very well. Much better than
what is indicated for the full BW algorithm implemented here.

This suggests that there may be issues when updating the
values when using ADDs. To further research this topic, a
hybrid implementation could be provided. This implementation
would utilize ADDs when calculating 𝛼 and 𝛽 and then employ
a recursive approach when updating values.

An implementation like this would require much conversion
between matrices and ADDs, but comparing a fully symbolic,
a recursive, and a hybrid approach would give further insight
into what CuPAAL struggles with.

For now, CuPAAL only measures the time taken to compute
the BW algorithm, but an interesting metric to compare would
be the memory used. If CuPAAL was discovered to require
less memory than Jajapy, even with more time needed for
larger models, it could be a better choice in situations where
memory was a constraint. However, without a memory metric
to compare, the decision can only be made based on the time
required for computing BW.

To allow CuPAAL and Jajapy to work together, Pybind11
was used to create bindings between the two. This decision was
made without exploring other options. Therefore, it might not
be the best-suited tool. For now, bindings that worked were
sufficient for the current iteration of CuPAAL, but further
consideration should be given to whether a better tool exists.

The library used to manipulate ADDs was Colorado Univer-
sity Decision Diagram (CuDD), as it was what previous work
had built upon. A discussion at the time was also whether this
is the best tool for the job, as other tools such as Sylvan exist.
This discussion remains relevant and worth exploring.

CuPAAL is designed for the BW algorithm, but it is worth
exploring other algorithms that could benefit from a symbolic
implementation. An algorithm that could be explored could
be the Viterbi algorithm. By exploring other algorithms, the
general benefits of using a symbolic approach can be better
understood.

7.2 Future Work

This section will discuss areas that might be worth exploring in
future work.

CuPAAL only utilizes a single core. This is not an issue
when comparing it to Jajapy, as it can be limited to using only
a single core. However, improving CuPAAL to support multiple
cores could be a worthwhile direction to explore, as it could
provide a significant performance increase.

In an observation sequence, observations are grouped if they
are identical, meaning that when computing these observations,
we can factor in the number of identical observations and only
compute one of them.

Expanding upon this idea involves making use of prefixes
and suffixes to enhance observations. Many observations may
not be entirely identical, but they could share a significant
number of labels.

To leverage this, prefixes and suffixes of observations could
be considered and grouped as is done currently. Given that an
observation sequence contains many observations that share
prefixes and suffixes of labels, the gain could prove to be
significant.

In the update step of BW in CuPAAL, consideration is not
made to check if the model worked on is an Markov Chain (MC).
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This might be worth adding, as in these cases, unnecessary
computation is made, as MCs do not require the Emission
function to be updated. This is a minor consideration, as these
values are ignored after they are computed, but it could be
worth implementing.

8 CONCLUSION

In this work, we present a symbolic implementation of
the Baum-Welch algorithm for both Hidden Markov Models
(HMMs) and Markov Chains (MCs), leveraging Algebraic
Decision Diagrams (ADDs) to replace traditional matrix and
recursive representations. By reformulating the Baum-Welch
(BW) algorithm using compact and canonical ADD structures,
our approach efficiently handles both the stochastic emissions
of HMMs and the deterministic emissions of MCs, enabling
scalable parameter learning across model types.

We extend the BW algorithm to support learning from
multiple observation sequences. Based on a matrix-derived
aggregation of expectations, we implement the corresponding
update steps symbolically using ADDs, eliminating the need
for recursive or dense matrix computations while retaining the
theoretical correctness of the original BW method.

To make this approach practical, we integrate the symbolic
implementation into the Jajapy library, resulting in Jajapy 2.
Through Pybind11 bindings, the C++ backend of CuPAAL is
exposed to Python, allowing users to switch seamlessly between
traditional and symbolic learning modes without disrupting
existing workflows.

Our experimental evaluation using the "leader_sync" model
from the QComp benchmark demonstrates that the symbolic
implementation in CuPAAL achieves significant runtime im-
provements over Jajapy’s original recursive method, especially
in scenarios involving long observation sequences or models
with structural redundancy. Accuracy remains unaffected, with
both implementations converging to equivalent log-likelihoods
and parameter estimates.

These findings underscore the potential of symbolic meth-
ods based on ADDs for large-scale probabilistic model learning.
By exploiting structure and sparsity, symbolic techniques
enable efficient manipulation of high-dimensional models,
offering promising applications in domains such as formal
verification, machine learning, and systems biology. Future
work may explore a hybrid implementation, parallelization, and
extensions of CuPAAL to other model types such as Markov
Decision Processs (MDPs) and Continuous Time Markov Chains
(CTMCs).
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APPENDIX A
MACHINE SPECIFICATIONS

The specifications of the machine used for the experiments
are listed in Table 6. The image used for the experiments is
based on the movesrwth/stormpy image (version 1.9.0), which
is a Docker image that contains the necessary dependencies
for running Jajapy2. We add the dependencies for CuPAAL to

2. https://hub.docker.com/r/movesrwth/stormpy

the image, which are listed in Table 7. For full details see the
github repository for CuPAAL.

TABLE 6
Machine specifications

Specification Value
CPU AMD Ryzen 5 3600
RAM 64 GB DDR4
OS Windows 11 Pro
Docker 4.40.0

A.1 Python Environment
This section describes the Python environment used for the
experiments. The Python version and the versions of the
libraries used are listed in Table 7.

TABLE 7
Python environment

Requirement Version
Python 3.12.3
Jajapy 0.10.8
CuPAAL 0.1.0
numpy 1.26.0
pandas 2.2.3
scipy 1.11.2
sympy 1.12.0
matplotlib 3.8.1
alive-progress 3.1.4
pybind11 global 2.13.6

APPENDIX B
CHEATSHEET

If something is represented with a greek letter, it is something
we calculate.

https://doi.org/10.1109/ICMLA52953.2021.00195
https://doi.org/10.1109/ICMLA52953.2021.00195
https://doi.org/10.1007/978-3-031-43835-6\_6
https://hub.docker.com/r/movesrwth/stormpy
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TABLE 8
Symbol table.

Symbol Meaning

ℝ Real numbers
𝔹 Boolean domain
ℚ Rational numbers
ℕ Natural numbers
ℳ Markov Model
𝑠 ∈ 𝑆 States
𝑙 ∈ 𝐿 Labels
𝑜 ∈ 𝑂 ∈ 𝒪 Observations
𝑡 ∈ 𝑇 Time steps
𝟏 Column vector of ones
𝜋 Initial distribution
𝜏 Transition function
𝜔 Emission function
𝛼 Forward probabilities
𝛽 Backward probabilities
𝛾 State probabilities given O
𝜉 Transition probabilities given O
𝜆 = (𝜋, 𝜏, 𝜔) Model Parameters
𝜇 Mean
𝜎 Standard deviation
𝜃 = (𝜇, 𝜎2) Parameters of a distribution
𝑃(𝒪; 𝜆) Probability of 𝒪 given 𝜆
𝓁(𝜆;𝒪) Log likelihood of 𝜆 under 𝒪
⋅ Scalar product
⊙ Hadamard product
⊗ Kronecker product
⊘ Hadamard division
• Transposed Khatri-Rao product
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